Class |
RiTa
|
Name |
markov
|
Description |
Creates a new RiMarkov object with functions for text-generation, as well as a range of other probabilistic functions.
This object uses Markov chains (aka n-grams) with options to process words or arbitrary regular expressions. |
Example |
txt = "This is a two sentence example. This is the second one."
rm = RiTa.markov(3); rm.addText(txt); sentences = rm.generate(2);
|
Parameters |
int | n-factor - the length of each n-gram stored in the model |
---|
Object (or Map in Java) | options for creating the model (optional)
{int} options.maxLengthMatch: # of words allowed in result to match a sequence in the input, default=∞
{boolean} options.disableInputChecks: if true, allow result to be present in the input, default=false
{Function} options.tokenize: a custom tokenize function to use, default=RiTa.tokenize
{Function} options.untokenize [JS only]: a custom tokenize function to use, default=RiTa.untokenize
{boolean} options.trace: if true, output debug log to console, default=false
{int} options.maxAttempts: max attempts before throwing a generation error, default=999
{String or String[]} options.text: text to be added to the model (same as via model.addText()
|
---|
|
Returns |
RiMarkov | a RiMarkov object |
---|
|
Related |
For more options/detail see the tutorial Generating with Markov chains |
Note |
tmp_note |
Syntax |
// Constructs a RiMarkov object and set its n-factor.
RiTa.markov(nFactor);
// Create an object and specify one or more options
RiTa.markov(nFactor, optionsObject);
|
Constants |
For more options/detail see the tutorial Generating with Markov chainsConstants
|
Platform |
Java / JavaScript |
|
|